成人国产综合一区二区在线观看_精品亚洲Ⅴa在线无码播放_91夜色app在线下载_高清综合欧美亚洲_免费黄色视频app_JAPANESE少妇出轨内射_免费+无码+国产_日本va中文字幕波多野结衣_欧美一级人与禽亚洲精品_日韩欧美精品一区二区在线观看

Hi,歡迎
+86 135 5637 6665 +852 2632 9637 6*12小時(shí)在線電話
圖片僅供參考

GY-MCUSC40-SCD41 serial port high-performance and high-precision carbon dioxide CO2 temperature and humidity sensor module

GY-SCD41

Model:GY-SCD41

Manufacturer:ANSC/OEM

Package:module

詳情

Product Introduction


High performance and high-precision carbon dioxide temperature and humidity sensor module


Module model: GY-SCD40-SCD41


Supply voltage: 2.4-5.5v


Interface: Standard IIC interface


Measurement range:


SCD40 CO2 measurement accuracy2 400 ppm – 2’000 ppm ± (50 ppm + 5% of reading)


SCD41 CO2 measurement accuracy2 400 ppm – 5’000 ppm ± (40 ppm + 5% of reading)



New SCD40 sensor and photoacoustic technology


The SCD40 miniaturized CO2 sensor provides a new approach for product design and will lay the foundation for various new sensing applications. Sensirion's experience has enabled it to innovate its CO2 sensor technology, providing a new device that is one seventh smaller in volume than its predecessor SCD30. The photoacoustic principle can reduce the size of the cavity used in SCD30 without affecting performance.


Advanced CO2 sensors, such as Sensirion's SCD30, are based on non dispersive (NDIR) optical detection principles. Due to their size and cost, the use of these NDIR sensors is limited to a few applications.


NDIR type sensors are optical sensors commonly used for gas analysis. The main components are an infrared light source with a wavelength filter, a sample chamber, and an infrared detector (Figure 2 and 3). The NDIR detector can measure the volumetric concentration of CO2 in the sample by irradiating an infrared beam passing through the sample cell (containing CO2) and measuring the amount of infrared light absorbed by the sample at the desired wavelength.


The sensitivity of sensors based on the NDIR principle is proportional to the beam path. The significant reduction in paths can lead to performance degradation, thereby limiting the miniaturization potential of this technology. In addition, sensors based on the NDIR principle do not have an economical BOM structure due to their size, structure, and large number of discrete components.


Gysel said, "In terms of miniaturization, NDIR technology seems to have reached the limit of CO2 sensors because the sensitivity of the sensor is proportional to the length of the beam path, and therefore proportional to the size of the sensor Sensirion has always aimed to disrupt the sensor market by making components smaller and more cost-effective without compromising performance. For CO2 sensing, we believe that photoacoustic technology is the most promising method: in addition to reducing the size and cost of CO2 sensors, this technology also allows SMT assembly to replace laborious through-hole soldering. Combining these three factors may open up new markets for CO2 sensing. I personally believe that photoacoustic technology has the potential to replace NDIR as the standard CO2 in the next five to ten years


The new SCD40 is based on Sensirion's photoacoustic PASens technology. The principle of photoacoustic detection can miniaturize sensors without affecting performance. This is because the sensitivity of the sensor is independent of the size of the optical cavity. By simultaneously using Sensirion's CMOSens technology for miniaturization, these two technologies can be combined to create a new type of sensor (Figure 4).


Figure 4: Size comparison between NDIR (SCD30) and PASenstechnology (SCD40) (Image: Sensirion)


The principle of photoacoustic is relatively simple: 4.26 μ m modulated narrowband light corresponding to the absorption band of CO2 molecules


Launch in a small enclosed space. Measure the absorption of CO2 molecules in the pool by partially illuminating the light. The absorption energy of CO2 molecules mainly excites molecular vibration, which leads to an increase in translational energy, resulting in periodic changes in pressure in the measurement unit, which can be measured using a microphone.


Giselle said, "After absorption, the energy of photons is first transferred to CO2 molecules, and then to surrounding molecules." "The absorbed energy leads to an increase in microscopic pressure. Due to millions of absorption events occurring inside the optical cavity, pressure increase becomes a macroscopic phenomenon. By tuning the IR emitter, we sense the increase and decrease in pressure at a clearly defined frequency - just sound waves. The frequency of sound is determined by the modulation frequency of the infrared emitter, but the amplitude of sound is proportional to the concentration of CO2


The microphone signal is then used to measure the number of CO2 molecules in the measurement unit and can be used to calculate CO2 concentration.


Serial TTL output GY-MCUSCD40 41, providing upper computer display software:

詳情-01


Product Photograph


SKU-01-GY-SCD40

SKU-03-GY-MCUSCD40串口TTL

SKU-04-GY-MCUSCD41串口TTL

主圖-00


Payment&Transportation


詳情8.1


Official Certificate&Certificate



詳情頁3.1



Multiple product supply



詳情5.1


Company office environment


詳情6.1


Warehouse Real Shot


170019007688325e.png


Standard packaging


詳情修改1.jpg


We also provide :


Part NoManufacturerDate CodeQuantityDescription
LM22676ADJNS19+250SOP8
TPS562201DDCRTI22+795500SOT23-6
NJG1806K75JRC22+500000DFN6
TLV74318PDQNRTI22+402000X2SON-4
NJG1801K75JRC22+300000SMD
NJG1804K64JRC22+300000DFN8
LM27761DSGRTI22+151000WSON8
TLV62565DBVRTI22+138000SOT23-5
TPS613222ADBVRTI22+108000SOT23-5
LNK625DG-TLPOWER22+100000SOP-8
OPA4322AIPWRTI22+100000TSSOP14
TLV75528PDRVRTI22+99000WSON-6
TPS7A2025PDQNRTI22+78500X2SON-4
TLV62568DBVRTI22+72000SOT23-5
STM32L051K8U6TRST22+60000QFN32
SKY66421-11SKYWORKS22+56500QFN16
TPS7A1111PDRVRTI22+54000WSON6
TLV62569PDDCRTI22+52000SOT23-6
TLV62569DBVRTI22+48000SOT23-5
TPS23753APWRTI22+40000TSSOP14
NB691GG-ZMPS22+30000QFN
SN74AHC1G02DBVRTI22+27939SOT-23
TPS63000DRCRTI22+23238VSON10
TLV75533PDRVRTI22+21500WSON6
NB687BGQ-ZMPS22+20000QFN
A3916GESTR-T-1ALLEGRO22+17150QFN-20
TPS62135RGXRTI22+15000VQFN11
TLE2022AMDRTI0803+12500SOP8
TPS23756PWPRTI22+12000HTSSOP-20



用戶信息:
電話號(hào)碼
中國(guó)大陸+86
  • 中國(guó)大陸+86
  • 中國(guó)臺(tái)灣+886
  • 中國(guó)香港+852
公司名稱
郵箱
產(chǎn)品型號(hào)
產(chǎn)品數(shù)量
備注留言
欧美精品中文字幕亚洲专区 | 中文字幕av有码高清片 | 国产人妖精品视频一区 | 欧美mv日韩mv国产网站 | 国产精品成人无码a无码 | 国产精品99久久久久久WWW | 亚洲av中文无码一区二区 | 中文字幕精品一区二区年下载 | 国产免费午夜a无码v视频 | 久久无码捆绑免费精品视频 | 亚洲VA欧美VA天堂V国产综合 | 亚洲精品欧美第二区第三区 | 9999亚洲金品在线播放 | 草莓AV在线永久免费观看 | 69国产成人精品午夜福中文 | 婷婷五月在线丁香亚洲 | 免费A级毛片无码无遮挡 | 亚洲AV日韩AV永久无码下载 | 免费国产女人高潮抽搐网站 | 国产精品久久久久久亚洲影视 | 久激情内射婷内射蜜桃 | 欧美日产一区二区三区免费 | 色欲av在线一区二区观看 | 国产欧美日韩另类精彩视频 | 久久久精品中文字幕麻豆发布 | 青青尤物热在线视频免费观看 | 国产精品免费观看调教网 | 久久AV无码精品人妻出轨 | 国产熟女偷窥一区二区视频 | 免费无码一区二区日韩视频 | 99久久亚州精品无码毛片 | 91黄色视频在线免费观看 | 91精品国产乱码久久久久 | 亚洲欧洲无卡二区视頻 | 亚洲第一极品精品无码 | 韩国三级中文字幕HD久久精品 | 免费看又黄又无码的网站 | 人妻内射一区二区在线视频 | 青草青草视频2免费观看 | 亚洲v欧美v日韩v国产v | 无码人妻中文字幕在线 |