成人国产综合一区二区在线观看_精品亚洲Ⅴa在线无码播放_91夜色app在线下载_高清综合欧美亚洲_免费黄色视频app_JAPANESE少妇出轨内射_免费+无码+国产_日本va中文字幕波多野结衣_欧美一级人与禽亚洲精品_日韩欧美精品一区二区在线观看

Hi,歡迎
+86 135 5637 6665 +852 2632 9637 6*12小時在線電話
圖片僅供參考

GY-MCUSC40-SCD41 serial port high-performance and high-precision carbon dioxide CO2 temperature and humidity sensor module

GY-SCD40

Model:GY-SCD40

Manufacturer:ANSC/OEM

Package:module

詳情

Product Introduction


High performance and high-precision carbon dioxide temperature and humidity sensor module


Module model: GY-SCD40-SCD41


Supply voltage: 2.4-5.5v


Interface: Standard IIC interface


Measurement range:


SCD40 CO2 measurement accuracy2 400 ppm – 2’000 ppm ± (50 ppm + 5% of reading)


SCD41 CO2 measurement accuracy2 400 ppm – 5’000 ppm ± (40 ppm + 5% of reading)



New SCD40 sensor and photoacoustic technology


The SCD40 miniaturized CO2 sensor provides a new approach for product design and will lay the foundation for various new sensing applications. Sensirion's experience has enabled it to innovate its CO2 sensor technology, providing a new device that is one seventh smaller in volume than its predecessor SCD30. The photoacoustic principle can reduce the size of the cavity used in SCD30 without affecting performance.


Advanced CO2 sensors, such as Sensirion's SCD30, are based on non dispersive (NDIR) optical detection principles. Due to their size and cost, the use of these NDIR sensors is limited to a few applications.


NDIR type sensors are optical sensors commonly used for gas analysis. The main components are an infrared light source with a wavelength filter, a sample chamber, and an infrared detector (Figure 2 and 3). The NDIR detector can measure the volumetric concentration of CO2 in the sample by irradiating an infrared beam passing through the sample cell (containing CO2) and measuring the amount of infrared light absorbed by the sample at the desired wavelength.


The sensitivity of sensors based on the NDIR principle is proportional to the beam path. The significant reduction in paths can lead to performance degradation, thereby limiting the miniaturization potential of this technology. In addition, sensors based on the NDIR principle do not have an economical BOM structure due to their size, structure, and large number of discrete components.


Gysel said, "In terms of miniaturization, NDIR technology seems to have reached the limit of CO2 sensors because the sensitivity of the sensor is proportional to the length of the beam path, and therefore proportional to the size of the sensor Sensirion has always aimed to disrupt the sensor market by making components smaller and more cost-effective without compromising performance. For CO2 sensing, we believe that photoacoustic technology is the most promising method: in addition to reducing the size and cost of CO2 sensors, this technology also allows SMT assembly to replace laborious through-hole soldering. Combining these three factors may open up new markets for CO2 sensing. I personally believe that photoacoustic technology has the potential to replace NDIR as the standard CO2 in the next five to ten years


The new SCD40 is based on Sensirion's photoacoustic PASens technology. The principle of photoacoustic detection can miniaturize sensors without affecting performance. This is because the sensitivity of the sensor is independent of the size of the optical cavity. By simultaneously using Sensirion's CMOSens technology for miniaturization, these two technologies can be combined to create a new type of sensor (Figure 4).


Figure 4: Size comparison between NDIR (SCD30) and PASenstechnology (SCD40) (Image: Sensirion)


The principle of photoacoustic is relatively simple: 4.26 μ m modulated narrowband light corresponding to the absorption band of CO2 molecules


Launch in a small enclosed space. Measure the absorption of CO2 molecules in the pool by partially illuminating the light. The absorption energy of CO2 molecules mainly excites molecular vibration, which leads to an increase in translational energy, resulting in periodic changes in pressure in the measurement unit, which can be measured using a microphone.


Giselle said, "After absorption, the energy of photons is first transferred to CO2 molecules, and then to surrounding molecules." "The absorbed energy leads to an increase in microscopic pressure. Due to millions of absorption events occurring inside the optical cavity, pressure increase becomes a macroscopic phenomenon. By tuning the IR emitter, we sense the increase and decrease in pressure at a clearly defined frequency - just sound waves. The frequency of sound is determined by the modulation frequency of the infrared emitter, but the amplitude of sound is proportional to the concentration of CO2


The microphone signal is then used to measure the number of CO2 molecules in the measurement unit and can be used to calculate CO2 concentration.


Serial TTL output GY-MCUSCD40 41, providing upper computer display software:

詳情-01


Product Photograph


SKU-01-GY-SCD40

SKU-03-GY-MCUSCD40串口TTL

SKU-04-GY-MCUSCD41串口TTL

主圖-00


Payment&Transportation


詳情8.1


Official Certificate&Certificate



詳情頁3.1



Multiple product supply



詳情5.1


Company office environment


詳情6.1


Warehouse Real Shot


170019007688325e.png


Standard packaging



詳情修改1.jpg

We also provide :


Part NoManufacturerDate CodeQuantityDescription
LM22676ADJNS19+250SOP8
TPS562201DDCRTI22+795500SOT23-6
NJG1806K75JRC22+500000DFN6
TLV74318PDQNRTI22+402000X2SON-4
NJG1801K75JRC22+300000SMD
NJG1804K64JRC22+300000DFN8
LM27761DSGRTI22+151000WSON8
TLV62565DBVRTI22+138000SOT23-5
TPS613222ADBVRTI22+108000SOT23-5
LNK625DG-TLPOWER22+100000SOP-8
OPA4322AIPWRTI22+100000TSSOP14
TLV75528PDRVRTI22+99000WSON-6
TPS7A2025PDQNRTI22+78500X2SON-4
TLV62568DBVRTI22+72000SOT23-5
STM32L051K8U6TRST22+60000QFN32
SKY66421-11SKYWORKS22+56500QFN16
TPS7A1111PDRVRTI22+54000WSON6
TLV62569PDDCRTI22+52000SOT23-6
TLV62569DBVRTI22+48000SOT23-5
TPS23753APWRTI22+40000TSSOP14
NB691GG-ZMPS22+30000QFN
SN74AHC1G02DBVRTI22+27939SOT-23
TPS63000DRCRTI22+23238VSON10
TLV75533PDRVRTI22+21500WSON6
NB687BGQ-ZMPS22+20000QFN
A3916GESTR-T-1ALLEGRO22+17150QFN-20
TPS62135RGXRTI22+15000VQFN11
TLE2022AMDRTI0803+12500SOP8
TPS23756PWPRTI22+12000HTSSOP-20



用戶信息:
電話號碼
中國大陸+86
  • 中國大陸+86
  • 中國臺灣+886
  • 中國香港+852
公司名稱
郵箱
產(chǎn)品型號
產(chǎn)品數(shù)量
備注留言
国产精品激情偷乱一区二区∴ | 亚洲理伦片精品无码不卡 | 亚洲国产成人综合精品 | 丝袜无码专区人妻视频 | 日本最新中文字幕在线视频 | 国产乱人伦AV在线A最新 | 国产无码在线观看一区二区 | 偷拍精品精品一区二区三区 | 国产女与黑人在线精品电影 | 一本大道AV伊人久久精品 | 国产精品VIDEOSSEX久久发布 | 国产又黄又爽胸又大免费视频 | 精品秘无码一区二区三区 | 色婷婷中文久久久男女做性无 | 国产乱人伦AV麻豆网 | 内射白浆一区二区在线观看 | 国产一级无码精品视频 | 中字幕视频在线永久在线 | 国产成人手机高清在线观看网站 | 久久久无码人妻精品无码 | 精品无码国产一区二区粉嫩 | 亚洲精品无码久久久久苍井空 | 国产精品亚洲精品日韩动图 | 欧美日韩国产分类一区二区 | 亚洲国产精品无码久久98 | 2018高清国产一区二区三区 | 国产热の有码热の无码视频 | 免费不卡国产福利在线观看 | 超碰爆乳超爆乳中文字幕版 | 免费无码不卡中文字幕在线 | 亚洲av无码乱码精品国产 | 国产不卡视频一区二区三区 | 97美女超碰精品国产麻豆 | 99无码熟妇丰满人妻啪啪 | 久久人人爽人人爽人人片Va | 亚洲一区二区三区国产精华液 | 国产精品186在线观看在线播放 | 午夜亚洲福利在线老司机 | 最新永久无码av网址亚洲 | 国产日产欧产精品精品制服 | 日韩精品无码人妻一区二区三区 |